BRAVO, based on Wald's SPRT for the Bernoulli distribution, is the most widely tried method for risk-limiting election audits. It cannot accommodate sampling without replacement or stratified sampling, which can improve efficiency and are sometimes required by law. It applies only to ballot-polling audits, which are less efficient than comparison audits. It applies to plurality, majority, super-majority, proportional representation, and ranked-choice voting contests, but not to many other social choice functions for which there are RLA methods, such as approval voting, STAR-voting, Borda count, and general scoring rules. And while it has the smallest expected sample size among sequentially valid ballot-polling-with-replacement methods when the reported vote shares are exactly correct, BRAVO can require arbitrarily large samples when the reported reported winner(s) really won but the reported vote shares are incorrect. ALPHA is a simple generalization of BRAVO that (i) works for sampling with and without replacement; (ii) can be used with stratified sampling; (iii) works not only for ballot-polling but also for ballot-level comparison, batch-polling, and batch-level comparison audits, sampling with or without replacement, uniformly or with weights proportional to a measure of size; (iv) works for all social choice functions covered by SHANGRLA, including approval voting, Borda count, and all scoring rules; and (v) in situations where both ALPHA and BRAVO apply, requires smaller samples than BRAVO when the reported vote shares are wrong but the outcome is correct -- five orders of magnitude in some examples. ALPHA includes the family of betting martingale tests in RiLACS, with a different betting strategy parametrized as an estimator of the population mean, and flexibility to accommodate sampling weights and population bounds that change with each draw. A Python implementation is provided.


翻译:BRAVO根据Wald's SPRT为Bernoulli分发的《Bernoulli》, 是风险限制选举审计中最广泛尝试的方法。 它无法在没有替换或分层抽样的情况下进行抽样, 这可以提高效率, 有时是法律要求的。 它只适用于选票投票审计, 比比较审计效率低。 它适用于多元性、多数、超多数、超多数、比例代表和排名投票比赛, 但不适用于其他许多有RLA方法的社会选择功能, 如批准投票、STAR投票、Borda计数和通用评分规则。 它在报告选票份额完全正确时, 只能使用顺序有效投票投票和分级投票方法中最小的样本规模。 BRAVO可以要求任意大的样本, 而报告的选票份额是不正确的。 ALPHA是一个简单概括的BRAVO(i) 用于抽样和不平均比率(iLVOi), 用于抽样和最低比率( ) (i) (i) 用于抽样取样, 和最低比率的比值 ) 和最低比率 的比值 的比值 。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员