This paper proposes a Lasso-type estimator for a high-dimensional sparse parameter identified by a single index conditional moment restriction (CMR). In addition to this parameter, the moment function can also depend on a nuisance function, such as the propensity score or the conditional choice probability, which we estimate by modern machine learning tools. We first adjust the moment function so that the gradient of the future loss function is insensitive (formally, Neyman-orthogonal) with respect to the first-stage regularization bias, preserving the single index property. We then take the loss function to be an indefinite integral of the adjusted moment function with respect to the single index. The proposed Lasso estimator converges at the oracle rate, where the oracle knows the nuisance function and solves only the parametric problem. We demonstrate our method by estimating the short-term heterogeneous impact of Connecticut's Jobs First welfare reform experiment on women's welfare participation decision.


翻译:本文提出一个由单一指数有条件时刻限制( CMR) 确定的高维维度稀有参数的Lasso 类型估计值。 除此参数外, 时间函数还取决于一个扰动函数, 例如我们用现代机器学习工具估算的倾向性评分或有条件选择概率。 我们首先调整时间函数, 以便未来损失函数的梯度对第一阶段的正规化偏差不敏感( 通常为 Neyman- orthogonal ), 保存单一指数属性 。 然后, 我们将损失函数视为对单一指数调整时函数的无限期组成部分 。 拟议的激光测距仪会集中在一个轴速率上, 使触角了解扰动功能, 只解决参数问题 。 我们通过估计康涅狄格工作的短期混杂影响来展示我们的方法, 是对女性福利参与决定进行的第一个福利改革实验 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Semi-parametric Bayesian Additive Regression Trees
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
18+阅读 · 2019年1月16日
Deep Comparison: Relation Columns for Few-Shot Learning
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员