We propose a model for finite games with deposit schemes and study how they can be instantiated to incentivize an intended behavior. Doing so is trivial if the deposit scheme can observe all actions taken in the game, as this allows it to simply keep the deposit for a party who does not play the intended strategy. Instead, we consider an abstraction where the deposit scheme is only allowed to probabilistically infer information about what happened during the execution of the game. We consider deposit schemes that are allowed to punish parties by withholding parts of their deposit, and compensate the other players with what is left over. We show that deposit schemes can be used to implement any set of utilities if and only if it is able to essentially infer all information about what happened in the game. We give a definition of game-theoretic security that generalizes subgame perfection for finite games of perfect information by quantifying how much utility a dishonest party loses by deviating from the equilibrium. We show how finding an optimal deposit scheme that ensures game-theoretic security, or showing no such scheme exists, can be stated as a linear program and solved using standard methods. The deposit schemes outputted are optimal in the sense that the size of the largest deposit is minimal. We state some additional desirable properties of deposit scheme and discuss various tradeoffs when deploying such systems in practice. We prove a lower bound on the size of the deposits, showing that the largest deposit must be linear in the security parameter.
翻译:我们提出一个有存款机制的有限游戏模式,并研究如何让存款机制被立即用于激励预定的行为。如果存款机制能够观察游戏中采取的所有行动,那么这样做是微不足道的。如果存款机制能够观察游戏中采取的所有行动,那么这样做是微不足道的,因为这允许它为不玩预定战略的一方保留存款。相反,我们考虑一个抽象的存款机制,它只允许让存款机制以概率推导关于执行游戏期间发生的情况的信息。我们考虑存款机制允许通过扣留部分存款来惩罚当事方,并补偿其他参与者的剩余行为来惩罚当事方。我们证明存款机制可以用来实施任何一套公用事业,如果而且只有在存款机制能够从根本上推断游戏中发生的一切信息的情况下,这样做是微不足道的。我们给出游戏理论安全定义,通过量化不诚实的一方通过偏离平衡而损失多少好处,来概括有限信息游戏的子游戏的完美。我们指出,如何找到一种最合适的存款机制,确保游戏-理论安全性安全,或显示不存在这种机制。我们表明,存款机制可以被称为一个线性程序,使用某种标准的存款规则的大小。我们用最起码的存款机制的存款制度来证明,这种最优化的存款制度是最优化的存款制度。我们把最高级的存款制度在最高级的存款制度上显示最高级的存款制度。