Building a recommendation system involves analyzing user data, which can potentially leak sensitive information about users. Anonymizing user data is often not sufficient for preserving user privacy. Motivated by this, we propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization, which is one of the most popular algorithms for recommendation systems. As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information even if the adversary possesses their publicly available (auxiliary) information. We implement differential privacy via the Gaussian mechanism in the form of output perturbation and release user profiles that satisfy privacy definitions. We employ R\'enyi Differential Privacy for a tight characterization of the overall privacy loss. We perform extensive experiments on real data to demonstrate that our proposed algorithm can offer excellent utility for some parameter choices, while guaranteeing strict privacy.
翻译:构建推荐系统涉及分析用户数据,这可能会泄漏有关用户的敏感信息。对用户数据进行匿名处理通常不足以保护用户隐私。出于这个原因,我们提出了一个基于差分隐私框架和矩阵分解的隐私保护推荐系统,矩阵分解是推荐系统中最流行的算法之一。由于差分隐私是设计隐私保护机器学习算法的强大和鲁棒的数学框架,因此即使对手持有用户的公开可用(辅助)信息,也可以防止对手提取敏感用户信息。我们通过高斯机制以输出扰动的形式实现差分隐私,并发布满足隐私定义的用户配置文件。我们采用Renyi差分隐私对整体隐私损失进行紧密描述。我们对真实数据进行了广泛的实验,以证明我们提出的算法在某些参数选择下可以提供出色的实用性,同时保证严格的隐私保护。