Mandarin-English code-switching (CS) is frequently used among East and Southeast Asian people. However, the intra-sentence language switching of the two very different languages makes recognizing CS speech challenging. Meanwhile, the recent successful non-autoregressive (NAR) ASR models remove the need for left-to-right beam decoding in autoregressive (AR) models and achieved outstanding performance and fast inference speed, but it has not been applied to Mandarin-English CS speech recognition. This paper takes advantage of the Mask-CTC NAR ASR framework to tackle the CS speech recognition issue. We further propose to change the Mandarin output target of the encoder to Pinyin for faster encoder training and introduce the Pinyin-to-Mandarin decoder to learn contextualized information. Moreover, we use word embedding label smoothing to regularize the decoder with contextualized information and projection matrix regularization to bridge that gap between the encoder and decoder. We evaluate these methods on the SEAME corpus and achieved exciting results.
翻译:东亚和东南亚人民经常使用普通话-英语密码转换(CS),但是,两种非常不同的语言在句内语言的转换使得承认CS语言具有挑战性。与此同时,最近成功的非自动递解(NAR) ASR模型成功地消除了在自动递解模式中左对右波束解码的必要性,并取得了杰出的性能和快速引文速度,但是它没有应用于普通话-英语CS的语音识别。本文利用Mask-CT NAR ASR框架解决CS语音识别问题。我们进一步提议将编码器的曼达林输出目标改为Pininin,以便进行更快的编码培训,并引入Pininin-Mandarin解码器以学习背景化信息。此外,我们用文字嵌入标签来将解码器与背景化信息统一起来,并预测矩阵的正规化以弥合编码器与解码器之间的鸿沟。我们评估了这些关于SEAMEP的系统方法并取得了令人兴奋的结果。