The goal of privacy-preserving social graph publishing is to protect individual privacy while preserving data utility. Community structure, which is an important global pattern of nodes, is a crucial data utility as it serves as fundamental operations for many graph analysis tasks. Yet, most existing methods with differential privacy (DP) commonly fall in edge-DP to sacrifice security in exchange for utility. Moreover, they reconstruct graphs from the local feature-extraction of nodes, resulting in poor community preservation. Motivated by this, we propose PrivCom, a strict node-DP graph publishing algorithm to maximize the utility on the community structure while maintaining a higher level of privacy. Specifically, to reduce the huge sensitivity, we devise a Katz index-based private graph feature extraction method, which can capture global graph structure features while greatly reducing the global sensitivity via a sensitivity regulation strategy. Yet, with a fixed sensitivity, the feature captured by Katz index, which is presented in matrix form, requires privacy budget splits. As a result, plenty of noise is injected, thereby mitigating global structural utility. To this end, we design a private Oja algorithm approximating eigen-decomposition, which yields the noisy Katz matrix via privately estimating eigenvectors and eigenvalues from extracted low-dimensional vectors. Experimental results confirm our theoretical findings and the efficacy of PrivCom.


翻译:保护隐私的社会图表出版的目标是保护个人隐私,同时保护数据实用性。社区结构是一个重要的全球节点模式,是一个至关重要的数据工具,因为它是许多图表分析任务的基本操作。然而,大多数有差异隐私(DP)的现有方法通常在边缘DP中下跌,以牺牲安全为交换工具。此外,它们从节点的本地特征扩展中重建图表,导致社区保护不良。因此,我们提议PriivCom,一个严格的节点-DP图表出版算法,以最大限度地发挥社区结构的效用,同时保持更高程度的隐私。具体地说,为了减少巨大的敏感性,我们设计了基于Katz指数的私人图形特征提取方法,通过敏感度监管战略可以捕捉全球图形结构特征,同时大大降低全球敏感度。然而,在固定的敏感度下,Katz指数所捕捉的特征需要以矩阵形式显示的隐私预算分割。因此,大量噪音被注入,从而减少了全球结构效用。为此,我们设计了一个私人Ojalogie 相对性理论性结构化的私人图象质数据提取方法,通过磁标的磁标的磁度和实验性磁标值,通过摄像压压的磁标的磁标。

0
下载
关闭预览

相关内容

【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员