In the paper, the planar polynomial geometric interpolation of data points is revisited. Simple sufficient geometric conditions that imply the existence of the interpolant are derived in general. They require data points to be convex in a certain discrete sense. Since the geometric interpolation is based precisely on the known data only, one may consider it as the parametric counterpart to the polynomial function interpolation. The established result confirms the H\"{o}llig-Koch conjecture on the existence and the approximation order in the planar case for parametric polynomial curves of any degree stated quite a while ago.
翻译:在本文中,对数据点的平面多元几何内插法进行了重新审视。一般地可以得出表明存在内插因素的简单充分的几何条件。这些条件要求数据点在某种离散的意义上具有共性。由于几何内插法完全以已知数据为基础,人们可以把它视为多元函数内插法的参数对应方。既定结果证实,在前段相当长的时间里,对任何程度的准数多数值曲线,在平面情况中存在和近似顺序的H\{o}llig-Koch预测。