Understanding humor is critical to creative language modeling with many applications in human-AI interaction. However, due to differences in the cognitive systems of the audience, the perception of humor can be highly subjective. Thus, a given passage can be regarded as funny to different degrees by different readers. This makes training humorous text recognition models that can adapt to diverse humor preferences highly challenging. In this paper, we propose the FedHumor approach to recognize humorous text contents in a personalized manner through federated learning (FL). It is a federated BERT model capable of jointly considering the overall distribution of humor scores with humor labels by individuals for given texts. Extensive experiments demonstrate significant advantages of FedHumor in recognizing humor contents accurately for people with diverse humor preferences compared to 9 state-of-the-art humor recognition approaches.


翻译:理解幽默对于在人类-AI互动中以多种应用模式建模的创造性语言至关重要。 但是,由于受众的认知系统不同,对幽默的感知可能是高度主观的。 因此,不同读者可以不同程度地认为某个段落有趣。 这使得培训幽默的文本识别模式变得非常具有幽默性,能够适应不同的幽默喜好。 在本文中,我们建议美联储采取方法,通过联合学习(FL)以个性化的方式承认幽默文本内容。 这是一个联合型的BERT模型,能够共同考虑个人对特定文本的幽默评分与幽默标签的总体分布。 广泛的实验表明,美联储在准确承认具有不同幽默喜好的人的幽默内容方面有相当大的优势,而最先进的幽默识别方法是9种。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
4+阅读 · 2019年8月22日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
3+阅读 · 2017年11月12日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员