Advances in NLP have yielded impressive results for the task of machine reading comprehension (MRC), with approaches having been reported to achieve performance comparable to that of humans. In this paper, we investigate whether state-of-the-art MRC models are able to correctly process Semantics Altering Modifications (SAM): linguistically-motivated phenomena that alter the semantics of a sentence while preserving most of its lexical surface form. We present a method to automatically generate and align challenge sets featuring original and altered examples. We further propose a novel evaluation methodology to correctly assess the capability of MRC systems to process these examples independent of the data they were optimised on, by discounting for effects introduced by domain shift. In a large-scale empirical study, we apply the methodology in order to evaluate extractive MRC models with regard to their capability to correctly process SAM-enriched data. We comprehensively cover 12 different state-of-the-art neural architecture configurations and four training datasets and find that -- despite their well-known remarkable performance -- optimised models consistently struggle to correctly process semantically altered data.


翻译:机器阅读理解(MRC)任务的进展令人印象深刻,据报告,在机器阅读理解(MRC)任务方面,我们取得了令人印象深刻的成果,并采取了与人类相似的绩效。在本文件中,我们调查了最先进的MRC模型是否能够正确处理语义变换改变(SAM):改变句子语义的由语言驱动的现象,同时保留其大部分地表法形式。我们提出了一个自动生成和调整以原始和变换实例为特点的成套挑战的方法。我们进一步提出一种新的评估方法,以正确评估MRC系统处理这些例子的能力,而这种能力独立于它们所选取的数据。在一项大规模的经验研究中,我们应用这一方法来评价采掘MRC模型正确处理SAM丰富数据的能力。我们全面覆盖了12个不同的状态的神经结构配置和4个培训数据集。我们发现,尽管它们有众所周知的显著性能,但最优化的模型始终在努力争取正确处理过程语义变数据。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
44+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
117+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员