Certified safe control is a growing challenge in robotics, especially when performance and safety objectives must be concurrently achieved. In this work, we extend the barrier state (BaS) concept, recently proposed for safe stabilization of continuous time systems, to safety-embedded trajectory optimization for discrete time systems using discrete barrier states (DBaS). The constructed DBaS is embedded into the discrete model of the safety-critical system integrating safety objectives into systems dynamics and performance objectives. Thereby, the control policy is now a function of the barrier state which directly supplies the controller with local information not available otherwise. This allows us to employ the DBaS with differential dynamic programming (DDP) to plan and execute safe optimal trajectories. The proposed algorithm is leveraged on various safety-critical control and planning problems including a differential wheeled robot safe navigation in complex environments and on a quadrotor to safely perform reaching and tracking tasks. The DBaS-based DDP (DBaS-DDP) is shown to consistently outperform penalty methods commonly used in constrained DDP problems.
翻译:在这项工作中,我们将最近为安全稳定连续时间系统而提出的屏障状态概念扩大到使用离散屏障状态的离散时间系统的安全嵌入轨迹优化。已建造的DBAS已嵌入安全关键系统离散模式,将安全目标纳入系统动态和性能目标。因此,控制政策现在是屏障状态的一个功能,它直接向控制器提供无法提供的当地信息。这使我们能够使用带有不同动态程序(DDP)的DBAS来规划和实施安全的最佳轨迹。提议的算法被用于各种安全临界控制和规划问题,包括在复杂环境中进行不同轮式的机械安全航行,以及用于安全完成和跟踪任务的象牙钻机上。基于DBAS的DDP(DBAS-DDP)显示,在受限制的DDP问题中,通常使用的处罚方法一直超过。