Despite its original goal to jointly learn to align and translate, prior researches suggest that Transformer captures poor word alignments through its attention mechanism. In this paper, we show that attention weights DO capture accurate word alignments and propose two novel word alignment induction methods Shift-Att and Shift-AET. The main idea is to induce alignments at the step when the to-be-aligned target token is the decoder input rather than the decoder output as in previous work. Shift-Att is an interpretation method that induces alignments from the attention weights of Transformer and does not require parameter update or architecture change. Shift-AET extracts alignments from an additional alignment module which is tightly integrated into Transformer and trained in isolation with supervision from symmetrized Shift-Att alignments. Experiments on three publicly available datasets demonstrate that both methods perform better than their corresponding neural baselines and Shift-AET significantly outperforms GIZA++ by 1.4-4.8 AER points.


翻译:尽管最初的目标是共同学习对齐和翻译, 先前的研究显示, 变换器通过其关注机制捕捉了差字对齐。 在本文中, 我们显示, 注意权重 DO 捕捉了准确的字对齐, 并提出了两种新颖的词对齐上岗方法 Shift- Att 和 Shift- AET 。 主要的想法是, 当对齐目标符号是拆解器输入而不是像先前工作那样的解码输出时, 使步调对齐。 Shift- Att 是一种解释方法, 吸引变换器的注意权重的对齐, 不需要参数更新或结构改变。 Shift- AET 提取了另一个对齐模块的对齐, 该模块与变换器紧密结合, 并在与对齐的变换式调整后进行单独培训。 对三种公开可用的数据集的实验表明, 这两种方法都比相应的神经基线和 Shift- AET 都比GIZA++++ + 1.4-4.8 AER 指 。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
4+阅读 · 2018年9月6日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
相关论文
Arxiv
4+阅读 · 2018年9月6日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员