Recent years have witnessed the prosperity of legal artificial intelligence with the development of technologies. In this paper, we propose a novel legal application of legal provision prediction (LPP), which aims to predict the related legal provisions of affairs. We formulate this task as a challenging knowledge graph completion problem, which requires not only text understanding but also graph reasoning. To this end, we propose a novel text-guided graph reasoning approach. We collect amounts of real-world legal provision data from the Guangdong government service website and construct a legal dataset called LegalLPP. Extensive experimental results on the dataset show that our approach achieves better performance compared with baselines. The code and dataset are available in \url{https://github.com/zjunlp/LegalPP} for reproducibility.
翻译:近些年来,随着技术的发展,法律人工智能取得了繁荣。在本文中,我们提议对法律规定预测(LPP)进行新的法律应用,其目的是预测相关的法律规定。我们将此任务设计为具有挑战性的知识图完成问题,不仅需要文本理解,还需要图表推理。为此,我们提议采用新的文本指导图表推理方法。我们从广东政府服务网站收集了数量真实世界的法律规定数据,并建立了一个称为法律LPP的法律数据集。关于数据集的广泛实验结果显示,我们的方法与基线相比取得了更好的业绩。代码和数据集可在\url{https://github.com/zjunp/LegalPP}中查阅,以供复制。