Data augmentations are known to improve robustness in speech-processing tasks. In this study, we summarize and compare different data augmentation strategies using S3PRL toolkit. We explore how HuBERT and wav2vec perform using different augmentation techniques (SpecAugment, Gaussian Noise, Speed Perturbation) for Phoneme Recognition (PR) and Automatic Speech Recognition (ASR) tasks. We evaluate model performance in terms of phoneme error rate (PER) and word error rate (WER). From the experiments, we observed that SpecAugment slightly improves the performance of HuBERT and wav2vec on the original dataset. Also, we show that models trained using the Gaussian Noise and Speed Perturbation dataset are more robust when tested with augmented test sets.
翻译:已知数据增强可以提高语音处理任务的稳健性。 在本研究中,我们用S3PRL工具包总结和比较不同的数据增强战略。我们探索HuBERT和wav2vec如何使用不同增强技术(语音识别和自动语音识别(PR)和自动语音识别(ASR)任务中的频谱、高山噪音、快速扰动)进行工作。我们从电话错误率(PER)和单词错误率(WER)的角度评价了示范性表现。我们从实验中发现,在原始数据集中,频谱搜索略微改进了HuBERT和 wav2vec的性能。此外,我们显示,使用高山噪音和快速扰动数据集培训的模型在用强化测试组进行测试时更加健全。</s>