In this paper, we discuss the convergence of an Algebraic MultiGrid (AMG) method for general symmetric positive-definite matrices. The method relies on an aggregation algorithm, named \emph{coarsening based on compatible weighted matching}, which exploits the interplay between the principle of compatible relaxation and the maximum product matching in undirected weighted graphs. The results are based on a general convergence analysis theory applied to the class of AMG methods employing unsmoothed aggregation and identifying a quality measure for the coarsening; similar quality measures were originally introduced and applied to other methods as tools to obtain good quality aggregates leading to optimal convergence for M-matrices. The analysis, as well as the coarsening procedure, is purely algebraic and, in our case, allows an \emph{a posteriori} evaluation of the quality of the aggregation procedure which we apply to analyze the impact of approximate algorithms for matching computation and the definition of graph edge weights. We also explore the connection between the choice of the aggregates and the compatible relaxation convergence, confirming the consistency between theories for designing coarsening procedures in purely algebraic multigrid methods and the effectiveness of the coarsening based on compatible weighted matching. We discuss various completely automatic algorithmic approaches to obtain aggregates for which good convergence properties are achieved on various test cases.


翻译:在本文中,我们讨论了通用正对正向确定基质矩阵(AMG)方法的趋同性。该方法依赖于一个总算算法,即基于兼容加权比对的计算法,名为 emph{coarsening,该算法利用兼容放松原则与未定向加权图中最大产品比对原则之间的相互作用。结果基于对使用不移动总和和的AMG方法类别应用的总体趋同性分析分析理论,并确定了粗略分析质量的衡量标准;最初引入了类似的质量措施,并应用到其他方法中,作为获得高质量综合数据的工具,从而实现M-maters的最佳趋同。该分析法以及粗略分析程序纯粹是代数法,使我们得以对组合程序的质量进行评估。我们应用该方法来分析对比对计算进行准的准性算法的影响和图形边缘重量的定义。我们还探讨了总和相容性趋同性趋同性趋同性趋同性之间的关联性,确认了在设计纯al-al-algric comgrading comgration comgraphal graphal comgraphal gration gration rogal gration pact proughcal rogy pact progilationsmactsmlationslationslationsmactsmlationsmationslation.我们用了在设计各种精度制制制制制制制制制制制制制制制制制制制制成的复合的多种方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员