Discovering governing equations of a physical system, represented by partial differential equations (PDEs), from data is a central challenge in a variety of areas of science and engineering. Current methods require either some prior knowledge (e.g., candidate PDE terms) to discover the PDE form, or a large dataset to learn a surrogate model of the PDE solution operator. Here, we propose the first solution operator learning method that only needs one PDE solution, i.e., one-shot learning. We first decompose the entire computational domain into small domains, where we learn a local solution operator, and then we find the coupled solution via either mesh-based fixed-point iteration or meshfree local-solution-operator informed neural networks. We demonstrate the effectiveness of our method on different PDEs, and our method exhibits a strong generalization property.
翻译:以部分差异方程式(PDEs)为代表的物理系统(物理系统)的定位方程式,从数据中发现物理系统(以部分差异方程式(PDEs)为代表),是科学和工程领域各个领域的一个中心挑战。当前方法需要先获得某些知识(如候选PDE术语)才能发现PDE形式,或者需要获得大型数据集才能学习PDE解决方案操作员的代用模型。这里,我们建议了第一个解决方案操作员学习方法,只需要一个PDE解决方案,即一线学习。我们首先将整个计算域分解成一个小域,在那里我们学习一个本地解决方案操作员,然后通过基于网状的固定点迭代或无网状的本地溶解操作器知情的神经网络找到配套解决方案。我们展示了我们方法在不同的PDEs上的有效性,我们的方法展示了一个强大的通用属性。