Selecting the top-$k$ highest scoring items under differential privacy (DP) is a fundamental task with many applications. This work presents three new results. First, the exponential mechanism, permute-and-flip and report-noisy-max, as well as their oneshot variants, are unified into the Lipschitz mechanism, an additive noise mechanism with a single DP-proof via a mandated Lipschitz property for the noise distribution. Second, this new generalized mechanism is paired with a canonical loss function to obtain the canonical Lipschitz mechanism, which can directly select k-subsets out of $d$ items in $O(dk+d \log d)$ time. The canonical loss function assesses subsets by how many users must change for the subset to become top-$k$. Third, this composition-free approach to subset selection improves utility guarantees by an $\Omega(\log k)$ factor compared to one-by-one selection via sequential composition, and our experiments on synthetic and real-world data indicate substantial utility improvements.


翻译:选择不同隐私(DP)下的最高分数项目是一项基本任务。 这项工作提出了三项新结果。 首先, 指数机制, permute- flip 和 report- noisy- max, 以及它们的单发变体, 被统一到Lipschitz 机制中, 一个通过授权的 Lipschitz 属性, 使用单一的 DP 防爆的附加噪音机制, 用于噪音分布。 其次, 这一新的普遍化机制与一个卡通性损失函数相配, 以获得 Canonical Lipschitz 机制, 该机制可以直接从$O ( dk+d\log) d) 的美元项目中选择 k subsets 。 罐头损失函数评估子集, 取决于有多少用户必须改变子集, 才能成为顶价 $。 第三, 与子集选择的不包含成成分的方法相比, 以 $\ Omega (\log k) 倍的因数改善公用事业保障,, 与通过序列组成逐一选取的因数, 我们在合成和现实世界数据的实验显示有相当的效用改进。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员