This paper presents a stability analysis tool for model predictive control (MPC) where control action is generated by optimising a cost function over a finite horizon. Stability analysis of MPC with a limited horizon but without terminal weight is a well known challenging problem. We define a new value function based on an auxiliary one-step optimisation related to stage cost, namely optimal one-step value function (OSVF). It is shown that a finite horizon MPC can be made to be asymptotically stable if OSVF is a (local) control Lyapunov function (CLF). More specifically, by exploiting the CLF property of OSFV to construct a contractive terminal set, a new stabilising MPC algorithm (CMPC) is proposed. We show that CMPC is recursively feasible and guarantees stability under the condition that OSVF is a CLF. Checking this condition and estimation of the maximal terminal set are discussed. Numerical examples are presented to demonstrate the effectiveness of the proposed stability condition and corresponding CMPC algorithm.
翻译:本文件为模型预测控制(MPC)提供了一个稳定分析工具,模型预测控制(MPC)是通过在一定的地平线上优化成本功能产生的控制行动。对具有有限地平线但没有终端重量的MPC的稳定分析是一个众所周知的棘手问题。我们根据与阶段成本有关的辅助一步优化,即最佳一步值功能(OSVF),确定了一个新的价值功能。如果OSVF是(当地)控制Lyapunov(CLF)功能,则可以使有限地平线的MPC变得尽可能稳定。更具体地说,通过利用OSF的CLF属性来构建一套合同性终端装置,我们提出了一个新的稳定MPC算法(CMPC)。我们表明,CMPC在OSVF是C的前提下,是循环可行的,并保证稳定性。我们讨论了这一条件和对最大终端数据集的估计。提出了数字实例,以证明拟议的稳定性条件的有效性和相应的CMPC算法。