Cities worldwide exhibit a variety of street network patterns and configurations that shape human mobility, equity, health, and livelihoods. This study models and analyzes the street networks of each urban area in the world, using boundaries derived from the Global Human Settlement Layer. Street network data are acquired and modeled from OpenStreetMap with the open-source OSMnx software. In total, this study models over 160 million OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas in 178 countries, and attaches elevation and grade data. This article presents the study's reproducible computational workflow, introduces two new open data repositories of ready-to-use global street network models and calculated indicators, and discusses summary findings on street network form worldwide. It makes four contributions. First, it reports the methodological advances of this open-source workflow. Second, it produces an open data repository containing street network models for each urban area. Third, it analyzes these models to produce an open data repository containing street network form indicators for each urban area. No such global urban street network indicator dataset has previously existed. Fourth, it presents a summary analysis of urban street network form, reporting the first such worldwide results in the literature.


翻译:全世界各城市的街道网络模式和格局呈现了影响人类流动性、公平、健康和生计的各种街道网络模式和格局,本研究模型和分析了世界上每个城市地区的街道网络,使用了全球人类住区层的边界。街道网络数据由OpenStreetMap以开放源码OSMnnx软件获得和建模。本研究模型共超过1.6亿个OpenStreetMap街道网络节点和超过3.2亿个横跨178个国家的8,914个城市地区的边缘,并附加了高地和年级数据。本文章介绍了这项研究可复制的计算工作流程,介绍了两个新的开放数据库,用于全球街道网络模式和计算指标,并讨论了全世界街道网络形式的简要调查结果。它提供了四份投入。首先,它报告了这一开放源工作流程的方法进展。第二,它制作了一个包含每个城市地区街道网络模型的开放数据储存库。第三,分析这些模型以产生一个包含街道网络形式的各城市地区指标的开放数据储存库。第四,它以这种全球城市街道网络指标数据集首次提供了全球街道结果的简要分析。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月6日
Arxiv
37+阅读 · 2021年2月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Compression of Deep Learning Models for Text: A Survey
Arxiv
6+阅读 · 2018年7月9日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员