The study of network formation is pervasive in economics, sociology, and many other fields. In this paper, we model network formation as a "choice" that is made by nodes in a network to connect to other nodes. We study these "choices" using discrete-choice models, in which an agent chooses between two or more discrete alternatives. One framework for studying network formation is the multinomial logit (MNL) model. We highlight limitations of the MNL model on networks that are constructed from empirical data. We employ the "repeated choice" (RC) model to study network formation \cite{TrainRevelt97mixedlogit}. We argue that the RC model overcomes important limitations of the MNL model and is well-suited to study network formation. We also illustrate how to use the RC model to accurately study network formation using both synthetic and real-world networks. Using synthetic networks, we also compare the performance of the MNL model and the RC model; we find that the RC model estimates the data-generation process of our synthetic networks more accurately than the MNL model. We provide examples of qualitatively interesting questions -- the presence of homophily in a teen friendship network and the fact that new patents are more likely to cite older, more cited, and similar patents -- for which the RC model allows us to achieve insights.
翻译:网络形成研究在经济学、社会学和许多其他领域十分普遍。 在本文中, 我们将网络形成作为“ 选择” 模型, 由网络中的节点制作, 与其他节点连接。 我们用独立的选择模型研究这些“ 选择 ”, 代理商在两种或两种以上离散的替代方法中选择。 研究网络形成的一个框架是多数字逻辑模型( MNL) 。 我们强调MNL模型在根据经验数据构建的网络上的局限性。 我们使用“ 重复选择” (RC) 模型来研究网络形成 \ cite{TrainRevelt97mixlogit} 。 我们指出, RC模型克服了MNL模型的重要局限性, 并且非常适合研究网络形成。 我们还说明了如何使用RC模型来精确地研究网络形成多数字网络(MNL) 。 我们用合成网络比较了MNL模型和RC模型的性能; 我们发现, RC模型估计了我们合成网络的生成过程, 其合成的精确性直观性数据模型比所引用的CMNL更精确得多。