Understanding the search dynamics of multiobjective evolutionary algorithms (MOEAs) is still an open problem. This paper extends a recent network-based tool, search trajectory networks (STNs), to model the behavior of MOEAs. Our approach uses the idea of decomposition, where a multiobjective problem is transformed into several single-objective problems. We show that STNs can be used to model and distinguish the search behavior of two popular multiobjective algorithms, MOEA/D and NSGA-II, using 10 continuous benchmark problems with 2 and 3 objectives. Our findings suggest that we can improve our understanding of MOEAs using STNs for algorithm analysis.
翻译:了解多目标进化算法(MOEAs)的搜索动态仍然是一个尚未解决的问题。 本文扩展了基于网络的最新工具, 搜索轨迹网络( STNs), 以模拟MOEAs的行为。 我们的方法是分解, 将多目标问题转化为几个单一目标问题。 我们显示, STNs可以用来模拟和区分两种流行的多目标算法( MOEA/ D 和 NSGA- II) 的搜索行为, 使用两个和三个目标的10个连续基准问题。 我们的发现表明, 我们可以用 STNs 进行算法分析来改进我们对MOEAs的理解 。