Oral epithelial dysplasia (OED) is a pre-malignant histopathological diagnosis given to lesions of the oral cavity. Predicting OED grade or whether a case will transition to malignancy is critical for early detection and appropriate treatment. OED typically begins in the lower third of the epithelium before progressing upwards with grade severity, thus we have suggested that segmenting intra-epithelial layers, in addition to individual nuclei, may enable researchers to evaluate important layer-specific morphological features for grade/malignancy prediction. We present HoVer-Net+, a deep learning framework to simultaneously segment (and classify) nuclei and (intra-)epithelial layers in H&E stained slides from OED cases. The proposed architecture consists of an encoder branch and four decoder branches for simultaneous instance segmentation of nuclei and semantic segmentation of the epithelial layers. We show that the proposed model achieves the state-of-the-art (SOTA) performance in both tasks, with no additional costs when compared to previous SOTA methods for each task. To the best of our knowledge, ours is the first method for simultaneous nuclear instance segmentation and semantic tissue segmentation, with potential for use in computational pathology for other similar simultaneous tasks and for future studies into malignancy prediction.
翻译:口腔口腔畸形(OED)是针对口腔腔损伤的肿瘤病理学诊断。预测 OED 等级或病例是否会向恶性病态过渡对于早期检测和适当治疗至关重要。 OED通常在上皮层的下三分之一开始,然后随着等级的严厉程度向上发展,因此我们建议,除个别核素外,将住院内层分解,使研究人员能够评估用于等级/感官预测的重要分层特有形态特征。我们介绍了HVer-Net+,一个深层学习框架,以同时进行分段(和分类)核核元和(内)住院性病态治疗,这对早期发现和治疗病例的H&E受染病性幻灯片至关重要。拟议的结构包括一个电解码分支和四个分层,以便同时进行肿瘤层核素和语系分层分解,使研究人员能够评估重要的分层形态特征。我们介绍HOVer-Net+,一个深度学习框架,一个深层框架,用于同时进行分段(核分层)的(核系分层)和同步分层研究的同步分层工作,对于未来分层研究而言,没有额外成本成本成本分析,我们每个任务采用SOTA方法。