Understanding the basic operational logics of the nervous system is essential to advancing neuroscientific research. However, theoretical efforts to tackle this fundamental problem are lacking, despite the abundant empirical data about the brain that has been collected in the past few decades. To address this shortcoming, this document introduces a hypothetical framework for the functional nature of primitive neural networks. It analyzes the idea that the activity of neurons and synapses can symbolically reenact the dynamic changes in the world and thus enable an adaptive system of behavior. More significantly, the network achieves this without participating in an algorithmic structure. When a neuron's activation represents some symbolic element in the environment, each of its synapses can indicate a potential change to the element and its future state. The efficacy of a synaptic connection further specifies the element's particular probability for, or contribution to, such a change. As it fires, a neuron's activation is transformed to its postsynaptic targets, resulting in a chronological shift of the represented elements. As the inherent function of summation in a neuron integrates the various presynaptic contributions, the neural network mimics the collective causal relationship of events in the observed environment.
翻译:理解神经系统的基本操作逻辑对于推进神经科学研究至关重要。然而,尽管过去几十年收集了大量关于大脑的经验性数据,但解决这一根本问题的理论努力仍然缺乏。为解决这一缺陷,本文件为原始神经网络的功能性质引入了一个假设框架。它分析了神经元和突触的活动可以象征性地重现世界动态变化,从而促成适应行为系统。更重要的是,网络在不参与算法结构的情况下实现了这一点。当神经元的激活在环境中代表了某种象征性元素时,每个神经元的突触可以表明该元素及其未来状态的潜在变化。合成连接的功效进一步说明了该元素对这种变化的具体可能性或贡献。当神经元和突触的激活可以象征性地重现世界动态变化,从而促成一个适应性的行为系统。更重要的是,这个网络在不参与算法结构的情况下实现了这一点。当神经元的激活在环境中代表了某种前合成贡献的内在功能时,神经元的每个突触作用都表明该元素及其未来状态可能发生变化。同步连接的功效进一步说明了该元素对这种变化的具体可能性或贡献。当神经神经的激活变成其后,导致代表的元素的元素发生时间顺序变化。