Energy management systems (EMS) rely on (non)-intrusive load monitoring (N)ILM to monitor and manage appliances and help residents be more energy efficient and thus more frugal. The robustness as well as the transfer potential of the most promising machine learning solutions for (N)ILM is not yet fully understood as they are trained and evaluated on relatively limited data. In this paper, we propose a new approach for load monitoring in building EMS based on dimensionality expansion of time series and transfer learning. We perform an extensive evaluation on 5 different low-frequency datasets. The proposed feature dimensionality expansion using video-like transformation and resource-aware deep learning architecture achieves an average weighted F1 score of 0.88 across the datasets with 29 appliances and is computationally more efficient compared to the state-of-the-art imaging methods. Investigating the proposed method for cross-dataset intra-domain transfer learning, we find that 1) our method performs with an average weighted F1 score of 0.80 while requiring 3-times fewer epochs for model training compared to the non-transfer approach, 2) can achieve an F1 score of 0.75 with only 230 data samples, and 3) our transfer approach outperforms the state-of-the-art in precision drop by up to 12 percentage points for unseen appliances.
翻译:能源管理系统(EMS)依赖于(非)侵入式负载监视(N)ILM来监视和管理设备,并帮助居民更加节能并更加节俭。目前,针对(N)ILM最有前途的机器学习方案的鲁棒性及迁移潜力尚未被完全理解,因为它们是在相对有限的数据上进行训练和评估的。在本文中,我们提出了一种基于时间序列维度扩展和迁移学习的新型建筑 EMS 负载监视方法。我们在5个不同的低频数据集上进行了广泛评估。所提出的视频式特征维度扩展和资源感知深度学习架构以平均加权 F1 分数为 0.88 获得了29个设备上的数据,并且相较于最先进的映像方法在计算效率方面更加高效。研究我们提出的跨数据集 intra-domain 迁移学习方法,我们发现 1)我们的方法在模型训练需要的时间上只需要之前的三分之一,即可实现平均加权 F1 分数为 0.80,2)只需要230个数据样品即可获得 F1 分数为 0.75,3)我们的迁移方法超越了前沿技术,对未见过的设备在精度下降方面最高可达 12 个百分点。