It is commonly believed that real networks are scale-free and fraction of nodes $P(k)$ with degree $k$ satisfies the power law $P(k) \propto k^{-\gamma} \text{ for } k > k_{min} > 0$. Preferential attachment is the mechanism that has been considered responsible for such organization of these networks. In many real networks, degree distribution before the $k_{min}$ varies very slowly to the extent of being uniform as compared with the degree distribution for $k > k_{min}$ . In this paper, we proposed a model that describe this particular degree distribution for the whole range of $k>0$. We adopt a two step approach. In the first step, at every time stamp we add a new node to the network and attach it with an existing node using preferential attachment method. In the second step, we add edges between existing pairs of nodes with the node selection based on the uniform probability distribution. Our approach generates weakly scale-free networks that closely follow the degree distribution of real-world networks. We perform comprehensive mathematical analysis of the model in the discrete domain and compare the degree distribution generated by these models with that of real-world networks.


翻译:人们通常认为,真正的网络是无规模的,实际网络是无规模的,节点(k)的一小部分是美元(k)美元(k)美元(k),数额(k),数额(k)美元,数额(k),数额(k),数额(gamma) \ text{为} k>0.00美元。优惠附加是被认为负责这些网络组织的机制。在许多实际网络中,美元(k)美元之前的度分布非常缓慢,与美元(k) > k ⁇ min)的度分布相比,程度差异很大。在本文件中,我们提出了一个模型,用来描述整个单位(k)美元(k)的这种特定程度分布。我们采取了两步方法。第一步,我们每次在网络上加一个新节点,并用优惠附加现有的节点。在第二步中,我们将现有的节点配对与根据统一概率分布的节点选择之间的边距加宽。我们的方法产生了较弱的无规模的网络,紧随真实世界网络的分布程度(k)的分布。我们用这些模型对真实世界的分布模式进行了全面的数学分析。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2017年11月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年4月20日
Arxiv
0+阅读 · 2021年4月19日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
5+阅读 · 2018年5月21日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2017年11月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员