A swarm of cooperating UAVs communicating with a distant multiantenna ground station can leverage MIMO spatial multiplexing to scale the capacity. Due to the line-of-sight propagation between the swarm and the ground station, the MIMO channel is highly correlated, leading to limited multiplexing gains. In this paper, we optimize the UAV positions to attain the maximum MIMO capacity given by the single user bound. An infinite set of UAV placements that attains the capacity bound is first derived. Given an initial swarm placement, we formulate the problem of minimizing the distance traveled by the UAVs to reach a placement within the capacity maximizing set of positions. An offline centralized solution to the problem using block coordinate descent is developed assuming known initial positions of UAVs. We also propose an online distributed algorithm, where the UAVs iteratively adjust their positions to maximize the capacity. Our proposed approaches are shown to significantly increase the capacity at the expense of a bounded translation from the initial UAV placements. This capacity increase persists when using a massive MIMO ground station. Using numerical simulations, we show the robustness of our approaches in a Rician channel under UAV motion disturbances.
翻译:与远方多antenna地面站合作的无人驾驶航空器群群与远方多网式地面站进行通信,可以使MIMO空间多路转换能力扩大。由于群与地面站之间的视线传播,MIMO频道高度相关,导致有限的多路增益。在本文中,我们优化无人驾驶航空器位置,以达到单一用户约束所赋予的MSIMO最大能力。首先得出一系列无穷无尽的无人驾驶航空器位置,以达到容量约束。鉴于最初的群集位置,我们形成了最大限度地缩小无人驾驶航空器在能力范围内定位距离的问题。使用块协调下位的离线集中解决方案正在开发,假设已知的无人驾驶航空器初始位置。我们还提出在线分布算法,让无人驾驶航空器对位置进行迭接调整,以最大限度地提高能力。我们提议的方法显示,以牺牲从最初的无人驾驶航空器定位中进行捆绑翻译为代价,大幅提高能力。在使用大型无人驾驶飞行器地面站时,这种能力将持续提高。我们用数字模拟,展示了我们在风道下进行震动时的稳健。