Recently, the use of synthetic training data has been on the rise as it offers correctly labelled datasets at a lower cost. The downside of this technique is that the so-called domain gap between the real target images and synthetic training data leads to a decrease in performance. In this paper, we attempt to provide a holistic overview of how to use synthetic data for object detection. We analyse aspects of generating the data as well as techniques used to train the models. We do so by devising a number of experiments, training models on the Dataset of Industrial Metal Objects (DIMO). This dataset contains both real and synthetic images. The synthetic part has different subsets that are either exact synthetic copies of the real data or are copies with certain aspects randomised. This allows us to analyse what types of variation are good for synthetic training data and which aspects should be modelled to closely match the target data. Furthermore, we investigate what types of training techniques are beneficial towards generalisation to real data, and how to use them. Additionally, we analyse how real images can be leveraged when training on synthetic images. All these experiments are validated on real data and benchmarked to models trained on real data. The results offer a number of interesting takeaways that can serve as basic guidelines for using synthetic data for object detection. Code to reproduce results is available at https://github.com/EDM-Research/DIMO_ObjectDetection.
翻译:最近,由于合成培训数据以较低的成本提供了正确的标签数据集,合成培训数据的使用一直在增加。这一技术的下坡面是,实际目标图像和合成培训数据之间的所谓领域差距导致性能下降。在本文件中,我们试图对如何使用合成数据探测物体提供整体性概览;我们分析数据生成的各个方面以及用于培训模型的技术;我们通过设计一系列实验、工业金属物体数据集培训模型(DIMO)来这样做。该数据集包含真实和合成图像。合成部分有不同的子集,要么是真实数据的确切合成副本,要么是某些方面随机复制的。这使我们能够分析哪些类型的差异对合成培训数据是好的,哪些方面应该进行模型化,以密切匹配目标数据。此外,我们调查哪些类型的培训技术有利于对真实数据进行概括化,以及如何使用这些数据。此外,我们分析合成图像培训时如何利用真实图像。所有这些实验都是对真实数据进行验证的,并参照了经过实际数据培训的模型。这使我们能够分析哪些类型的差异,哪些是合成数据/Regib的复制结果,用于进行合成数据检测。