We give an algorithm that given a graph $G$ with $n$ vertices and $m$ edges and an integer $k$, in time $O_k(n^{1+o(1)}) + O(m)$ either outputs a rank decomposition of $G$ of width at most $k$ or determines that the rankwidth of $G$ is larger than $k$; the $O_k(\cdot)$-notation hides factors depending on $k$. Our algorithm returns also a $(2^{k+1}-1)$-expression for cliquewidth, yielding a $(2^{k+1}-1)$-approximation algorithm for cliquewidth with the same running time. This improves upon the $O_k(n^2)$ time algorithm of Fomin and Korhonen [STOC 2022]. The main ingredient of our algorithm is a fully dynamic algorithm for maintaining rank decompositions of bounded width: We give a data structure that for a dynamic $n$-vertex graph $G$ that is updated by edge insertions and deletions maintains a rank decomposition of $G$ of width at most $4k$ under the promise that the rankwidth of $G$ never grows above $k$. The amortized running time of each update is $O_k(2^{\sqrt{\log n} \log \log n})$. The data structure furthermore can maintain whether $G$ satisfies some fixed ${\sf CMSO}_1$ property within the same running time. We also give a framework for performing ``dense'' edge updates inside a given set of vertices $X$, where the new edges inside $X$ are described by a given ${\sf CMSO}_1$ sentence and vertex labels, in amortized $O_k(|X| \cdot 2^{\sqrt{\log n} \log \log n})$ time. Our dynamic algorithm generalizes the dynamic treewidth algorithm of Korhonen, Majewski, Nadara, Pilipczuk, and Soko{\l}owski [FOCS 2023].


翻译:暂无翻译

0
下载
关闭预览

相关内容

【干货书】线性代数概论:计算、应用和理论,435页pdf
专知会员服务
59+阅读 · 2023年1月30日
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
136+阅读 · 2022年9月17日
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员