A novel unconstrained optimization model named weighted trace-penalty minimization (WTPM) is proposed to address the extreme eigenvalue problem arising from the Full Configuration Interaction (FCI) method. Theoretical analysis reveals the global minimizers are desired eigenvectors instead of the eigenspace. Analyzing the condition number of the Hessian operator in detail contributes to the determination of a near-optimal weight matrix. With the sparse feature of FCI matrices in mind, the coordinate descent (CD) method is adapted to WTPM and results in WTPM-CD method. The reduction of computational and storage costs in each iteration shows the efficiency of the proposed algorithm. Finally, the numerical experiments demonstrate the capability to address large-scale FCI matrices.
翻译:提出了名为加权微量最小化(WTPM)的新颖、不受限制的优化模型,以解决因全配置互动(FTI)方法而产生的极端二元值问题。理论分析显示,全球最小化器是理想的成分体,而不是等分体。详细分析赫森操作员的条件号有助于确定接近最佳的重量矩阵。考虑到FCI矩阵的稀疏特征,对协调下沉法进行了调整,以适应WTPM方法,并得出WTPM-CD方法的结果。每种迭代中计算和储存成本的减少显示了拟议算法的效率。最后,数字实验显示了处理大型FCI矩阵的能力。