As demand for computational resources reaches unprecedented levels, research is expanding into the use of complex material substrates for computing. In this study, we interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir and optimize its properties using an evolution in materio approach. Input data are encoded as waves applied to our shallow water reservoir, and the readout wave height is obtained at a fixed detection point. We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm, with the objective of maximizing the system's ability to linearly separate observations in the training data by maximizing the readout matrix determinant. Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters. We also applied our approach to a regression task and show that our approach improves out-of-sample accuracy. Results from this study will inform how we interface with the physical reservoir in future work, and we will use these methods to continue to optimize other aspects of the physical implementation of this system as a computational reservoir.
翻译:随着对计算资源的需求达到前所未有的水平,研究正在扩大到使用复杂材料基底进行计算。在本研究中,我们利用进化材料方法与一家初创企业开发的水动力系统模型接口,将其作为计算沉积物,并通过优化来提高其性能。输入数据被编码成施加于浅水水库的波浪,检测波高度在一个固定检测点处得到。我们使用进化搜索算法优化了读出时间以及如何将输入映射到波的幅度或频率,以最大化系统通过最大化读出矩阵行列式来线性分离训练数据的能力。将进化方法应用于这个沉积物系统,在XNOR任务中大大改善了分辨率,而手动选择参数实现的结果则显示,不具有如此的优势。我们还将这种方法应用于回归任务,并显示我们的方法提高了样本外的精度。本研究的结果将指导我们如何在未来工作中与物理沉积物系统进行接口,并使用这些方法继续优化该系统作为计算沉积物的其他方面。