项目名称: 底栖动物对沉积物微界面磷的二维扰动效应及其主要机制
项目编号: No.41471402
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 地质学
项目作者: 许笛
作者单位: 中国科学院南京地理与湖泊研究所
项目金额: 85万元
中文摘要: 作为湖泊表层沉积物的重要改造者,大型底栖动物扰动对沉积物界面物质流的影响一直受到高度的关注。沉积物磷界面迁移是造成水体富营养化的主要途径之一,但长期以来大量研究采用一维、低分辨(cm级)的研究手段,造成对界面磷生物扰动效应缺乏明确的认识。本项目以典型富营养湖泊太湖为研究背景,选择优势种河蚬、霍甫水丝蚯、摇蚊幼虫为研究对象,在对荧光示踪-沉积物剖面成像(f-SPI)、平面光极(PO)和薄膜扩散(DGT)等多种二维高分辨技术进行集成和装置化的基础上,通过获取沉积物微界面溶解态和有效态磷的分布信息,从二维、毫米-亚毫米尺度上揭示底栖动物对微界面磷的扰动效应;利用二维高分辨手段同步考察生物扰动对界面微环境的影响,结合湖区现场的原位分析,阐明底栖动物对界面磷扰动效应的主要机制。
中文关键词: 沉积物;磷;沉积物-水界面;生物扰动;高分辨
英文摘要: As an important modifier in surface sediments of lakes, the influence of macrobenthos on the material flow in the vicinity of the sediment-water interface (SWI) has attracted high attention. The migration of phosphorus (P) across the SWI is one of the major pathway causing water eutrophication in lake. However, there lacks a clear understanding of bioturbation effects on P migration for a long time due to the use of the techniques capable of obtaining one-dimensional (1D) spatial information at a cm scale. This project will carry out a comprehensive study on bioturbation effects of the three dominant species in an eutrophic Lake Taihu, including corbicula fluminea, limnodrilus hoffmeisterib and chironomid larwae. Several techniques capable of obtaining high-resolution, 2D spatial information, including the fluorescent sediment profile imaging (f-SPI) , the planar optode sensor (PO) and the diffusive gradients in thin films technique (DGT), will be combined and used in a device. The spatial distribution of soluble reactive P (SRP) and effective concentration P will be measured using these techniques, based on which the 2D bioturbation effects will be discovered at a 2D, mm-submm levels. The influences of bioturbation on microenvironments in the vinicity of the SWI will be simultaneously studied, and the major mechanisms responsible for the bioturbation effects on SWI P will be elucidated in combination with the in situ, simultaneous measurements of P and relevant indicators in Lake Taihu.
英文关键词: sediment;phosphorus;sediment-water interface;bioturbation;high resolution