Process mining is a relatively new subject which builds a bridge between process modelling and data mining. An exclusive choice in a process model usually splits the process into different branches. However, in some processes, it is possible to switch from one branch to another. The inductive miner guarantees to return sound process models, but fails to return a precise model when there are switch behaviours between different exclusive choice branches due to the limitation of process trees. In this paper, we present a novel extension to the process tree model to support switch behaviours between different branches of the exclusive choice operator and propose a novel extension to the inductive miner to discover sound process models with switch behaviours. The proposed discovery technique utilizes the theory of a previous study to detect possible switch behaviours. We apply both artificial and publicly-available datasets to evaluate our approach. Our results show that our approach can improve the precision of discovered models by 36% while maintaining high fitness values compared to the original inductive miner.
翻译:工艺采矿是一个相对较新的课题,它为进程建模和数据开采之间搭建了一座桥梁。在工艺模型中,一个独家选择通常将过程分成不同的分支。然而,在某些过程中,有可能从一个分支转换到另一个分支。引进式矿工保证返回健全的工艺模型,但由于工艺树的限制,在不同独家选择分支之间发生转换行为时,却未能返回精确模型。在本文件中,我们展示了工艺树模型的新扩展,以支持在独家选择操作者的不同分支之间转换行为,并提议对诱导式矿工进行新的扩展,以发现带有切换行为的健全工艺模型。提议的发现技术利用先前研究的理论来探测可能的切换行为。我们应用人工和公开可用的数据集来评估我们的方法。我们的结果表明,我们的方法可以提高所发现模型的精确度36%,同时保持与原始导导式采矿者相比的高健康价值。