We propose ProoFVer, a proof system for fact verification using natural logic. The textual entailment model in ProoFVer is a seq2seq model generating valid natural-logic based logical inferences as its proofs. The generation of proofs makes ProoFVer an explainable system. The proof consists of iterative lexical mutations of spans in the claim with spans in a set of retrieved evidence sentences. Further, each such mutation is marked with an entailment relation using natural logic operators. The veracity of a claim is determined solely based on the sequence of natural logic relations present in the proof. By design, this makes ProoFVer a faithful by construction system that generates faithful explanations. ProoFVer outperforms existing fact-verification models, with more than two percent absolute improvements in performance and robustness. In addition to its explanations being faithful, ProoFVer also scores high on rationale extraction, with a five point absolute improvement compared to attention-based rationales in existing models. Finally, we find that humans correctly simulate ProoFVer's decisions more often using the proofs, than the decisions of an existing model that directly use the retrieved evidence for decision making.


翻译:我们提出使用自然逻辑进行事实核查的证明系统ProoFVer 。 ProoFVer 中的文本包含模型是产生有效自然逻辑逻辑推断的后继2seq 模型。 产生证明使ProoFVer 成为一个可以解释的系统。 证据包括索赔中带有一系列检索证据句中跨度的重复性法变异。 此外, 每种变异都以自然逻辑操作者为诱因关系标志。 索赔的真实性完全根据证据中存在的自然逻辑关系序列来确定。 设计上, ProoFVer 使ProoFVer 成为建筑系统的忠实信徒, 产生忠实的解释。 ProoFVer 超越了现有的事实验证模型, 其性能和稳健性方面有超过2%的绝对改进。 除了解释外, ProoFVer 还在理由提取方面得分高, 与现有模型中基于关注的理由相比, 5点绝对性改进。 最后, 我们发现, 人类正确模拟ProoFVer 的决定, 更经常使用现有的证据, 而不是直接使用现有决定。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月9日
Kernel Graph Attention Network for Fact Verification
Arxiv
3+阅读 · 2019年10月23日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月9日
Kernel Graph Attention Network for Fact Verification
Arxiv
3+阅读 · 2019年10月23日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员