We are interested in the numerical reconstruction of a vector field with prescribed divergence and curl in a general domain of R 3 or R 2 , not necessarily contractible. To this aim, we introduce some basic concepts of finite element exterieur calculus and rely heavily on recent results of P. Leopardi and A. Stern. The goal of the paper is to take advantage of the links between usual vector calculus and exterior calculus and show the interest of the exterior calculus framework, without too much prior knowledge of the subject. We start by describing the method used for contractible domains and its implementation using the FEniCS library (see fenicsproject.org). We then address the problems encountered with non contractible domains and general boundary conditions and explain how to adapt the method to handle these cases. Finally we give some numerical results obtained with this method, in dimension 2 and 3.
翻译:我们感兴趣的是,在R 3或R 2的总域内,对矢量字段进行数字重建,规定有差异和曲线,但不一定具有合同性。为此,我们引入了一些有限元素体积微积分的基本概念,并大量依赖P. Leopardi和A. Stern的最新结果。本文的目的是利用通常的矢量积分和外部微积分之间的联系,表现出外部微积分框架的兴趣,而不必事先对主题有太多的了解。我们首先用FENICS图书馆(见fenisproject.org)来描述可承包域及其实施的方法。然后我们处理在不可承包域和一般边界条件下遇到的问题,并解释如何调整处理这些案件的方法。最后,我们在第2和第3方面提供了使用这种方法取得的一些数字结果。最后,我们用这个方法在第2和第3方面提供了一些数字结果。