Numerical models of complex real-world phenomena often necessitate High Performance Computing (HPC). Uncertainties increase problem dimensionality further and pose even greater challenges. We present a parallelization strategy for multilevel Markov chain Monte Carlo, a state-of-the-art, algorithmically scalable Uncertainty Quantification (UQ) algorithm for Bayesian inverse problems, and a new software framework allowing for large-scale parallelism across forward model evaluations and the UQ algorithms themselves. The main scalability challenge presents itself in the form of strong data dependencies introduced by the MLMCMC method, prohibiting trivial parallelization. Our software is released as part of the modular and open-source MIT UQ Library (MUQ), and can easily be coupled with arbitrary user codes. We demonstrate it using the DUNE and the ExaHyPE Engine. The latter provides a realistic, large-scale tsunami model in which identify the source of a tsunami from buoy-elevation data.
翻译:复杂的现实世界现象的数值模型往往要求采用高性能计算法(HPC) 。不确定性进一步增加了问题维度,并提出了更大的挑战。我们为多层次的Markov链Monte Carlo提出了一个平行战略,这是针对巴伊西亚逆向问题的一种最先进的、算法上可伸缩的不确定性定量算法(UQ ), 以及一个新的软件框架,允许在前方模型评估和UQ算法本身之间实现大规模平行。主要可扩展性挑战表现为MLMC方法引入的强有力的数据依赖性,禁止微小的平行化。我们的软件作为MIT UQ图书馆(MUQ ) 的模块和公开源码的一部分发布,很容易与任意的用户代码连接。我们用DUNE 和 ExaHyPE 引擎来演示它。后者提供了一个现实的大型海啸模型,用以识别浮升数据的海啸源。