Numerical models of complex real-world phenomena often necessitate High Performance Computing (HPC). Uncertainties increase problem dimensionality further and pose even greater challenges. We present a parallelization strategy for multilevel Markov chain Monte Carlo, a state-of-the-art, algorithmically scalable Uncertainty Quantification (UQ) algorithm for Bayesian inverse problems, and a new software framework allowing for large-scale parallelism across forward model evaluations and the UQ algorithms themselves. The main scalability challenge presents itself in the form of strong data dependencies introduced by the MLMCMC method, prohibiting trivial parallelization. Our software is released as part of the modular and open-source MIT UQ Library (MUQ), and can easily be coupled with arbitrary user codes. We demonstrate it using the DUNE and the ExaHyPE Engine. The latter provides a realistic, large-scale tsunami model in which identify the source of a tsunami from buoy-elevation data.


翻译:复杂的现实世界现象的数值模型往往要求采用高性能计算法(HPC) 。不确定性进一步增加了问题维度,并提出了更大的挑战。我们为多层次的Markov链Monte Carlo提出了一个平行战略,这是针对巴伊西亚逆向问题的一种最先进的、算法上可伸缩的不确定性定量算法(UQ ), 以及一个新的软件框架,允许在前方模型评估和UQ算法本身之间实现大规模平行。主要可扩展性挑战表现为MLMC方法引入的强有力的数据依赖性,禁止微小的平行化。我们的软件作为MIT UQ图书馆(MUQ ) 的模块和公开源码的一部分发布,很容易与任意的用户代码连接。我们用DUNE 和 ExaHyPE 引擎来演示它。后者提供了一个现实的大型海啸模型,用以识别浮升数据的海啸源。

0
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年4月12日
专知会员服务
53+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
4+阅读 · 2018年11月26日
VIP会员
相关VIP内容
专知会员服务
58+阅读 · 2021年4月12日
专知会员服务
53+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员