Twitter is one of the most popular social networks attracting millions of users, while a considerable proportion of online discourse is captured. It provides a simple usage framework with short messages and an efficient application programming interface (API) enabling the research community to study and analyze several aspects of this social network. However, the Twitter usage simplicity can lead to malicious handling by various bots. The malicious handling phenomenon expands in online discourse, especially during the electoral periods, where except the legitimate bots used for dissemination and communication purposes, the goal is to manipulate the public opinion and the electorate towards a certain direction, specific ideology, or political party. This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data. To this end, a supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm, where the hyper-parameters are tuned via cross-validation. Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions by calculating feature importance, using the game theoretic-based Shapley values. Experimental evaluation on distinct Twitter datasets demonstrate the superiority of our approach, in terms of bot detection accuracy, when compared against a recent state-of-the-art Twitter bot detection method.
翻译:推特是最受欢迎的社交网络之一,吸引了数百万用户,同时也记录了相当大比例的在线话语。它提供了一个简单的使用框架,提供了短信息以及高效的应用编程界面(API),使研究界能够研究和分析这个社交网络的多个方面。然而,Twitter的简单使用可能导致各种机器人恶意处理。恶意处理现象在网上话语中,特别是在选举期间,除了用于传播和沟通的合法机器人之外,在选举期间,恶意处理现象在网上话语中有所扩大,目的是操纵公众舆论和选民走向某个方向、特定意识形态或政党。本文侧重于设计一个基于贴标签的Twitter数据识别Twitter机器人的新型系统。为此,采用了一个监督的机器学习(ML)框架,使用极速推力推力推力推动(XGBoost)算法,在通过交叉校验时对超标数进行调。我们的研究还运用了Saply Additifications(SHAP) 来解释ML模型预测,通过计算地貌重要性,使用基于游戏的Shatritephy-bolay rotal scretal laveal ress laveal laction acal suder laveal lating the sign the supact the set the creal degal degal degal degal degalizations set the set the set the sality salizationalizationalizations sutional subaldal subal sution subalizolvedations sutionaldaldaldaldaldaldal subal ress subal ress subal subal suctions subal subal subal suctions) suctions lactions suctions lactions suctions suctions subal subal subal subal subal subal subal suctions suctions suctions suctions suctions subal subaldal ex ex。我们,用算算算算算算算