The Fiedler vector of a connected graph is the eigenvector associated with the algebraic connectivity of the graph Laplacian and it provides substantial information to learn the latent structure of a graph. In real-world applications, however, the data may be subject to heavy-tailed noise and outliers which results in deteriorations in the structure of the Fiedler vector estimate. We design a Robust Regularized Locality Preserving Indexing (RRLPI) method for Fiedler vector estimation that aims to approximate the nonlinear manifold structure of the Laplace Beltrami operator while minimizing the negative impact of outliers. First, an analysis of the effects of two fundamental outlier types on the eigen-decomposition for block affinity matrices which are essential in cluster analysis is conducted. Then, an error model is formulated and a robust Fiedler vector estimation algorithm is developed. An unsupervised penalty parameter selection algorithm is proposed that leverages the geometric structure of the projection space to perform robust regularized Fiedler estimation. The performance of RRLPI is benchmarked against existing competitors in terms of detection probability, partitioning quality, image segmentation capability, robustness and computation time using a large variety of synthetic and real data experiments.
翻译:相连接的图形的 Fiedler 矢量的 Fiedler 矢量是 与 图形 Laplacecian 的代数连通性相联的振动器, 它提供了大量信息, 以了解图形的潜伏结构。 然而, 在现实世界应用中, 数据可能受到重尾噪声和外缘的影响, 从而导致Fiedler 矢量估计结构的恶化。 我们为 Fiedler 矢量估算设计了一种强性、 规范的本地保存指数( RRLPI ) 方法, 旨在接近 Laplace Beltrami 操作器的非线性多重结构, 并同时最大限度地减少外星的消极影响。 首先, 分析两种基本外星类型对块亲近性矩阵的分解作用, 这在集群分析中至关重要。 然后, 我们设计出一个错误模型, 并开发一个稳健的 Fiedler 矢量估计算法。 提议一种不超强的处罚参数选择算法, 利用预测空间的几何结构来进行稳健的正规的固定的 Fiedler 估计。 RRLPIPIPI 的性业绩是参照现有竞争者在可靠、 概率、 和大量合成图像的概率的概率、 的概率分析能力、 的大规模分析能力、 的概率分析中, 的大规模的概率性、 等等等等测测测测测测数据。