Failure to timely diagnose and effectively treat depression leads to over 280 million people suffering from this psychological disorder worldwide. The information cues of depression can be harvested from diverse heterogeneous resources, e.g., audio, visual, and textual data, raising demand for new effective multi-modal fusion approaches for its automatic estimation. In this work, we tackle the task of automatically identifying depression from multi-modal data and introduce a sub-attention mechanism for linking heterogeneous information while leveraging Convolutional Bidirectional LSTM as our backbone. To validate this idea, we conduct extensive experiments on the public DAIC-WOZ benchmark for depression assessment featuring different evaluation modes and taking gender-specific biases into account. The proposed model yields effective results with 0.89 precision and 0.70 F1-score in detecting major depression and 4.92 MAE in estimating the severity. Our attention-based fusion module consistently outperforms conventional late fusion approaches and achieves a competitive performance compared to the previously published depression estimation frameworks, while learning to diagnose the disorder end-to-end and relying on far less preprocessing steps.
翻译:在这项工作中,我们的任务是从多模式数据中自动识别抑郁症,并采用分关注机制将多种信息联系起来,同时利用横向双向LSTM作为我们的骨干。为了证实这一想法,我们从多种不同的资源,例如视听和文字数据中收集抑郁症的信息信号,从而增加对新的有效多模式融合方法的需求,以便自动估算其自动评估。我们的工作是,从多模式数据中自动识别抑郁症,并采用分关注机制,将多种信息联系起来,同时利用循环双向LSTM作为我们的骨干。我们广泛试验DACIC-WOZ公共抑郁症评估基准,该基准以不同的评价模式为特征,并考虑到性别偏见。拟议模型在发现重大抑郁症方面产生有效结果,精确度为0.89分,F1分点0.70分,估计严重程度为4.92分数。我们基于注意的融合模块始终优于常规迟发聚症方法,并实现与以前公布的抑郁症估计框架相比的竞争性性表现,同时学习诊断病端和依赖早前处理步骤。