Multiresolution provides a fundamental tool based on the wavelet theory to build adaptive numerical schemes for Partial Differential Equations and time-adaptive meshes, allowing for error control. We have introduced this strategy before to construct adaptive lattice Boltzmann methods with this interesting feature.Furthermore, these schemes allow for an effective memory compression of the solution when spatially localized phenomena -- such as shocks or fronts -- are involved, to rely on the original scheme without any manipulation at the finest level of grid and to reach a high level of accuracy on the solution.Nevertheless, the peculiar way of modeling the desired physical phenomena in the lattice Boltzmann schemes calls, besides the possibility of controlling the error introduced by the mesh adaptation, for a deeper and more precise understanding of how mesh adaptation alters the physics approximated by the numerical strategy. In this contribution, this issue is studied by performing the equivalent equations analysis of the adaptive method after writing the scheme under an adapted formalism. It provides an essential tool to master the perturbations introduced by the adaptive numerical strategy, which can thus be devised to preserve the desired features of the reference scheme at a high order of accuracy. The theoretical considerations are corroborated by numerical experiments in both the 1D and 2D context, showing the relevance of the analysis. In particular, we show that our numerical method outperforms traditional approaches, whether or not the solution of the reference scheme converges to the solution of the target equation.Furthermore, we discuss the influence of various collision strategies for non-linear problems, showing that they have only a marginal impact on the quality of the solution, thus further assessing the proposed strategy.


翻译:多分辨率提供了一种基于波浪理论的基本工具,以建立适应性的数字办法,用于部分差异方程和时间适应的中间线,允许控制错误。我们之前已经引入了这一战略,以建立适应性拉蒂斯·博尔茨曼方法,具有这一有趣的特点。此外,在空间局部现象(如冲击或战线)涉及时,这些方法允许有效地存储解决方案。在最优化的网格水平上不作任何操纵地依赖原方案,并达到解决方案的高度准确性。尽管如此,在拉蒂斯·博尔茨曼方案中模拟所希望的物理现象的特殊方法需要边际,除了有可能控制网格调整带来的错误之外,我们还引入了这一战略,以便更深入和更精确地理解适应性如何改变数字战略所近的物理。在这一贡献中,通过对适应方法进行等量方分析来研究这一问题。它为掌握适应性数字战略所引入的各种扰动性策略提供了必要的工具,因此可以设计出参考性方法的预期性参考性特点,而我们在2号组合中,我们用高数值方法来展示了我们的拟议方法的精确度。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月20日
Arxiv
0+阅读 · 2021年7月16日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员