Gibbs sampling methods for mixture models are based on data augmentation schemes that account for the unobserved partition in the data. Conditional samplers rely on allocation variables that identify each observation with a mixture component. They are known to suffer from slow mixing in infinite mixtures, where some form of truncation, either deterministic or random, is required. In mixtures with random number of components, the exploration of parameter spaces of different dimensions can also be challenging. We tackle these issues by expressing the mixture components in the random order of appearance in an exchangeable sequence directed by the mixing distribution. We derive a sampler that is straightforward to implement for mixing distributions with tractable size-biased ordered weights. In infinite mixtures, no form of truncation is necessary. As for finite mixtures with random dimension, a simple updating of the number of components is obtained by a blocking argument, thus, easing challenges found in trans-dimensional moves via Metropolis-Hasting steps. Additionally, the latent clustering structure of the model is encrypted by means of an ordered partition with blocks labelled in the least element order, which mitigates the label-switching problem. We illustrate through a simulation study the good mixing performance of the new sampler.


翻译:混合物模型的Gibbs抽样方法基于数据增强计划,其中考虑到数据中未观测到的分区。有条件采样器依赖分配变量,该变量可以识别每种观测都含有混合物的混合物。已知它们会受到无限混合物中缓慢混合的影响,需要某种形式的脱轨,无论是确定性的还是随机的。在含有随机数量成分的混合物中,探索不同维度的参数空间也可能具有挑战性。我们通过在混合分布所指示的可互换序列中以随机的外观顺序表达混合物成分来解决这些问题。我们产生一个采样器,该采样器可以直接用于使用可移动大小偏移的定重重量混合分布。在无限混合物中,不需要任何形式的脱轨。对于具有随机尺寸的定型混合物,只需通过阻塞参数来简单更新部件的数量,从而缓解在通过Metopolis-Hasting步骤的跨维移动过程中发现的挑战。此外,模型的潜伏聚集结构是通过一个定型分区来加密的,以最小元素顺序标定的区块进行加密,从而减轻标签转换问题。我们通过模拟的样品来说明良好的混合。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员