论文题目: Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection

摘要: 事件检测(Event detection, ED)是事件抽取的一个子任务,包括识别触发器和对事件提及进行分类。现有的方法主要依赖于监督学习,并且需要大规模的带标记的事件数据集,不幸的是,这些数据集在许多实际的应用场景中并不容易获得。在本文中,我们将在有限标记数据条件下的ED任务考虑为一个小概率学习问题。提出了一种基于动态记忆的原型网络(DMB-PN),该网络利用动态记忆网络(DMN)不仅能更好地学习事件类型的原型,而且能对事件提及产生更健壮的句子编码。与传统的通过平均计算事件原型的网络不同,我们的模型更健壮,并且由于DMNs的多跳机制,能够多次从事件提及中提取上下文信息。实验结果表明,DMB-PN不仅比一系列基线模型更能有效地处理样本稀缺问题,而且在事件类型变化较大、实例数量极少时表现得更为稳健。

作者: Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi Zhang, Wei Zhang, Huajun Chen

成为VIP会员查看完整内容
元学习与动态记忆为基础的原型网络的小样本突发事件检测.pdf
56

相关内容

用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。是最常见的机器学习方法。
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【浙江大学】使用MAML元学习的少样本图分类
专知会员服务
62+阅读 · 2020年3月22日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
专知会员服务
87+阅读 · 2020年1月20日
论文浅尝 | 面向时序知识图谱推理的循环事件网络
开放知识图谱
78+阅读 · 2019年9月22日
论文浅尝 | 使用循环神经网络的联合事件抽取
开放知识图谱
25+阅读 · 2019年4月28日
Arxiv
26+阅读 · 2020年2月21日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
微信扫码咨询专知VIP会员