This paper proposes a novel topological learning framework that can integrate networks of different sizes and topology through persistent homology. This is possible through the introduction of a new topological loss function that enables such challenging task. The use of the proposed loss function bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations with ground truth to assess the effectiveness of the topological loss in discriminating networks with different topology. The method is further applied to a twin brain imaging study in determining if the brain network is genetically heritable. The challenge is in overlaying the topologically different functional brain networks obtained from the resting-state functional magnetic resonance imaging (fMRI) onto the template structural brain network obtained through the diffusion tensor imaging (DTI).
翻译:本文提出一个新的地形学学习框架,通过持久性同族学整合不同大小和地形的网络。通过引入新的地形损失功能,可以实现这种具有挑战性的任务。使用拟议的损失功能绕过与匹配网络相关的内在计算瓶颈。我们用地面真理验证了广泛的统计模拟方法,以评估与不同地形学不同的歧视网络中的地形损失的有效性。在确定大脑网络是否具有遗传遗传遗传性时,该方法进一步应用于双脑成像研究。挑战在于将从休息状态功能磁共振成像(fMRI)获得的在地形上截然不同的功能性脑网络覆盖到通过扩散感应成像(DTI)获得的模板结构脑网络中。