List colouring is an influential and classic topic in graph theory. We initiate the study of a natural strengthening of this problem, where instead of one list-colouring, we seek many in parallel. Our explorations have uncovered a potentially rich seam of interesting problems spanning chromatic graph theory. Given a $k$-list-assignment $L$ of a graph $G$, which is the assignment of a list $L(v)$ of $k$ colours to each vertex $v\in V(G)$, we study the existence of $k$ pairwise-disjoint proper colourings of $G$ using colours from these lists. We may refer to this as a \emph{list-packing}. Using a mix of combinatorial and probabilistic methods, we set out some basic upper bounds on the smallest $k$ for which such a list-packing is always guaranteed, in terms of the number of vertices, the degeneracy, the maximum degree, or the (list) chromatic number of $G$. (The reader might already find it interesting that such a minimal $k$ is well defined.) We also pursue a more focused study of the case when $G$ is a bipartite graph. Our results do not yet rule out the tantalising prospect that the minimal $k$ above is not too much larger than the list chromatic number. Our study has taken inspiration from study of the strong chromatic number, and we also explore generalisations of the problem above in the same spirit.


翻译:列表颜色在图形理论中是一个有影响和经典的话题。 我们开始研究这一问题的自然强化问题, 而不是一个列表颜色, 我们在此同时寻找很多。 我们的探索发现了一个可能富饶的、 包括染色图理论在内的有趣的问题。 使用组合式和预测性方法的组合, 我们设置了一些基本上限, 最小的 $K $G$, 即列表包装总是得到保证的 $L (v) $k$ 。 列表为每个 vertex $v\ in V( G) $, 我们用这些列表中的颜色来研究是否存在美元对调合合的美元正配色。 使用这些颜色, 我们可能会将此称为 \ emph{ list- 包装} 。 使用组合式和 robabableical 的混合方法, 我们为最小的 $( $) 美元( $ ) 设置了某些基本上限的上限, 而在我们研究中, 最起码的数值( list) $ (trocial) exisal) excial extial exis a extiquest exmission a extiquest le made a we made made more mess le mess le mess le mess legre legre le a leglegre legent legus mess a le a ex ex ex legle a le a ex ex le a ex le a legent legent le a ex lemental mession.</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员