Understanding an opponent agent helps in negotiating with it. Existing works on understanding opponents focus on preference modeling (or estimating the opponent's utility function). An important but largely unexplored direction is recognizing an opponent's negotiation strategy, which captures the opponent's tactics, e.g., to be tough at the beginning but to concede toward the deadline. Recognizing complex, state-of-the-art, negotiation strategies is extremely challenging, and simple heuristics may not be adequate for this purpose. We propose a novel data-driven approach for recognizing an opponent's s negotiation strategy. Our approach includes a data generation method for an agent to generate domain-independent sequences by negotiating with a variety of opponents across domains, a feature engineering method for representing negotiation data as time series with time-step features and overall features, and a hybrid (recurrent neural network-based) deep learning method for recognizing an opponent's strategy from the time series of bids. We perform extensive experiments, spanning four problem scenarios, to demonstrate the effectiveness of our approach.


翻译:了解对手的手法有助于与对手谈判。 了解对手的现有工作侧重于偏好模式(或估计对手的效用功能 ) 。 一个重要但基本上尚未探索的方向是承认对手的谈判战略,它抓住对手的战术,例如,在开始时强硬,但向最后期限让步。 承认复杂、最先进的谈判战略是极具挑战性的,简单的疲劳主义可能不足以达到这个目的。 我们提出了一种新颖的数据驱动方法来承认对手的谈判战略。 我们的方法包括一种数据生成方法,让一个代理人通过与各领域的各种反对者谈判产生独立的域序列。 一种特色工程方法,将谈判数据作为具有时间步骤特点和总体特征的时间序列,以及一种混合(经常以神经网络为基础的)深层次学习方法,从时间招标序列中识别对手的战略。 我们进行了广泛的实验,跨越四个问题设想,以证明我们的方法的有效性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Semantic Communications for Speech Recognition
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
8+阅读 · 2021年6月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员