Understanding an opponent agent helps in negotiating with it. Existing works on understanding opponents focus on preference modeling (or estimating the opponent's utility function). An important but largely unexplored direction is recognizing an opponent's negotiation strategy, which captures the opponent's tactics, e.g., to be tough at the beginning but to concede toward the deadline. Recognizing complex, state-of-the-art, negotiation strategies is extremely challenging, and simple heuristics may not be adequate for this purpose. We propose a novel data-driven approach for recognizing an opponent's s negotiation strategy. Our approach includes a data generation method for an agent to generate domain-independent sequences by negotiating with a variety of opponents across domains, a feature engineering method for representing negotiation data as time series with time-step features and overall features, and a hybrid (recurrent neural network-based) deep learning method for recognizing an opponent's strategy from the time series of bids. We perform extensive experiments, spanning four problem scenarios, to demonstrate the effectiveness of our approach.
翻译:了解对手的手法有助于与对手谈判。 了解对手的现有工作侧重于偏好模式(或估计对手的效用功能 ) 。 一个重要但基本上尚未探索的方向是承认对手的谈判战略,它抓住对手的战术,例如,在开始时强硬,但向最后期限让步。 承认复杂、最先进的谈判战略是极具挑战性的,简单的疲劳主义可能不足以达到这个目的。 我们提出了一种新颖的数据驱动方法来承认对手的谈判战略。 我们的方法包括一种数据生成方法,让一个代理人通过与各领域的各种反对者谈判产生独立的域序列。 一种特色工程方法,将谈判数据作为具有时间步骤特点和总体特征的时间序列,以及一种混合(经常以神经网络为基础的)深层次学习方法,从时间招标序列中识别对手的战略。 我们进行了广泛的实验,跨越四个问题设想,以证明我们的方法的有效性。