The traditional communications transmit all the source date represented by bits, regardless of the content of source and the semantic information required by the receiver. However, in some applications, the receiver only needs part of the source data that represents critical semantic information, which prompts to transmit the application-related information, especially when bandwidth resources are limited. In this paper, we consider a semantic communication system for speech recognition by designing the transceiver as an end-to-end (E2E) system. Particularly, a deep learning (DL)-enabled semantic communication system, named DeepSC-SR, is developed to learn and extract text-related semantic features at the transmitter, which motivates the system to transmit much less than the source speech data without performance degradation. Moreover, in order to facilitate the proposed DeepSC-SR for dynamic channel environments, we investigate a robust model to cope with various channel environments without requiring retraining. The simulation results demonstrate that our proposed DeepSC-SR outperforms the traditional communication systems in terms of the speech recognition metrics, such as character-error-rate and word-error-rate, and is more robust to channel variations, especially in the low signal-to-noise (SNR) regime.
翻译:在本文中,我们考虑建立一个语义通信系统,通过将收发器设计为终端至终端系统(E2E)来识别语音。特别是,开发了一个深学(DL)带动的语义通信系统,名为DeepSC-SR,以学习和提取发报机中与文字有关的语义特征,从而激励系统在不出现性能退化的情况下传输远低于源语义数据的语义数据。此外,为了便利为动态频道环境而提议的DeepSC-SR,我们调查了一种强大的模式,以便在不需要再培训的情况下应对各种频道环境。模拟结果表明,我们提议的深思-SR在语音识别指标方面超越了传统通信系统,例如字符-eror-reserm-erisernorate, 特别是低信号-RIS变异的系统。