Second-order statistics play a crucial role in analysing point processes. Previous research has specifically explored locally weighted second-order statistics for point processes, offering diagnostic tests in various spatial domains. However, there remains a need to improve inference for complex intensity functions, especially when the point process likelihood is intractable and in the presence of interactions among points. This paper addresses this gap by proposing a method that exploits local second-order characteristics to account for local dependencies in the fitting procedure. Our approach utilises the Papangelou conditional intensity function for general Gibbs processes, avoiding explicit assumptions about the degree of interaction and homogeneity. We provide simulation results and an application to real data to assess the proposed method's goodness-of-fit. Overall, this work contributes to advancing statistical techniques for point process analysis in the presence of spatial interactions.
翻译:暂无翻译