Bayesian approaches are one of the primary methodologies to tackle an inverse problem in high dimensions. Such an inverse problem arises in hydrology to infer the permeability field given flow data in a porous media. It is common practice to decompose the unknown field into some basis and infer the decomposition parameters instead of directly inferring the unknown. Given the multiscale nature of permeability fields, wavelets are a natural choice for parameterizing them. This study uses a Bayesian approach to incorporate the statistical sparsity that characterizes discrete wavelet coefficients. First, we impose a prior distribution incorporating the hierarchical structure of the wavelet coefficient and smoothness of reconstruction via scale-dependent hyperparameters. Then, Sequential Monte Carlo (SMC) method adaptively explores the posterior density on different scales, followed by model selection based on Bayes Factors. Finally, the permeability field is reconstructed from the coefficients using a multiresolution approach based on second-generation wavelets. Here, observations from the pressure sensor grid network are computed via Multilevel Adaptive Wavelet Collocation Method (AWCM). Results highlight the importance of prior modeling on parameter estimation in the inverse problem.
翻译:贝叶斯方法是解决高维逆问题的主要方法之一。在水文学中,逆问题的一个例子是推断多孔介质中的渗透率场,给定了渗透率的流数据。常见的做法是将未知场分解为某些基函数并推断分解参数。考虑到渗透率场的多尺度性质,小波是参数化渗透率场的一种自然选择。本研究使用贝叶斯方法来融合离散小波系数的统计稀疏性,首先引入先验分布以及融合了小波系数的分层结构以及尺度相关超参数的光滑度先验。然后,顺序蒙特卡罗( SMC )方法自适应地在不同的尺度上探索后验密度,随后通过基于贝叶斯因子的模型选择。最后,使用基于二代小波的多分辨逼近法从系数中重建渗透率场。压力传感器网络的观测值通过多层自适应小波协作方法 ( Multilevel Adaptive Wavelet Collocation Method , AWCM ) 计算。结果强调了在逆问题的参数估计中先验建模的重要性。