Given a sequence of possibly sparse and noisy GPS traces and a map of the road network, map matching algorithms can infer the most accurate trajectory on the road network. However, if the road network is wrong (for example due to missing or incorrectly mapped roads, missing parking lots, misdirected turn restrictions or misdirected one-way streets) standard map matching algorithms fail to reconstruct the correct trajectory. In this paper, an algorithm to tracking vehicles able to move both on and off the known road network is formulated. It efficiently unifies existing hidden Markov model (HMM) approaches for map matching and standard free-space tracking methods (e.g. Kalman smoothing) in a principled way. The algorithm is a form of interacting multiple model (IMM) filter subject to an additional assumption on the type of model interaction permitted, termed here as semi-interacting multiple model (sIMM) filter. A forward filter (suitable for real-time tracking) and backward MAP sampling step (suitable for MAP trajectory inference and map matching) are described. The framework set out here is agnostic to the specific tracking models used, and makes clear how to replace these components with others of a similar type. In addition to avoiding generating misleading map matching trajectories, this algorithm can be applied to learn map features by detecting unmapped or incorrectly mapped roads and parking lots, incorrectly mapped turn restrictions and road directions.
翻译:鉴于一系列可能稀少和噪音的GPS痕迹和道路网络地图,地图匹配算法可以以有原则的方式推断道路网络上最准确的轨迹。然而,如果道路网络是错误的(例如,由于道路丢失或不正确的地图绘制、停车场丢失、弯路限制错误或单行街道方向错误),标准的地图匹配算法无法重建正确的轨迹。在本文中,设计了一种跟踪能够在已知的道路网络上和网外移动的车辆的算法。它有效地统一了现有隐藏的Markov模型(HMM)的地图匹配和标准自由空间跟踪方法(例如,Kalman滑动),但是,如果道路网络是错误的(例如,由于道路缺失或不正确的地图绘制,该算法是一种互动的多模式过滤器(IMM),但需在允许的模型类型上附加额外假设,这里称之为半交互作用的多重模型(sIMM)过滤器。一个前端过滤器(适合实时跟踪)和后端的MAP取样步骤(对MAP的轨迹轨迹误判和地图匹配而言),在这里设置的框架是对具体跟踪模型的不具有一定的附加,在使用,并且根据错误的路径绘制地图绘制图绘制选择进行选择,并且将其他的模型进行更清楚的排序,可以用来取代。