Virtual and augmented reality (VR/AR) displays strive to provide a resolution, framerate and field of view that matches the perceptual capabilities of the human visual system, all while constrained by limited compute budgets and transmission bandwidths of wearable computing systems. Foveated graphics techniques have emerged that could achieve these goals by exploiting the falloff of spatial acuity in the periphery of the visual field. However, considerably less attention has been given to temporal aspects of human vision, which also vary across the retina. This is in part due to the lack of a unified eccentricity-dependent spatio-temporal model of the visual system. Here, we introduce the first such model, experimentally measuring and computationally fitting a model of critical flicker fusion. In this way, our model is unique in enabling the prediction of temporal information that is imperceptible for a certain spatial frequency, eccentricity, and range of luminance levels. We validate our model with an image quality user study, and use it to predict potential bandwidth savings 7x higher than those afforded by current spatial-only foveated models. As such, this work forms the enabling foundation for new temporally foveated graphics techniques.
翻译:虚拟和扩展现实( VR/AR) 显示, 努力提供符合人类视觉系统感知能力的分辨率、 框架率和视野领域, 但由于有限的计算预算和可磨损计算系统的传输带宽有限而受到限制。 变化的图形技术已经出现, 利用视觉场外围空间光度的下降来实现这些目标。 但是, 对人类视觉的时间方面给予的关注却少得多, 这些方面在视网膜之间也各不相同。 部分原因是缺乏统一的偏心性依赖时空空间模型。 在这里, 我们引入第一个模型, 实验性测量和计算性地适应一个关键闪烁的模型。 这样, 我们的模式在预测某些空间频率、 偏心度和亮度范围上都无法察觉的时间信息方面是独一无二的。 我们用图像质量用户研究来验证我们的模型, 并使用它来预测比当前空间偏差模型提供的频率高7x的可能性带宽节量。 如此的图像模型, 使图像基础成为新的基础。