Convolutional neural networks have been proven effective in a variety of image restoration tasks. Most state-of-the-art solutions, however, are trained using images with a single particular degradation level, and their performance deteriorates drastically when applied to other degradation settings. In this paper, we propose deep likelihood network (DL-Net), aiming at generalizing off-the-shelf image restoration networks to succeed over a spectrum of degradation levels. We slightly modify an off-the-shelf network by appending a simple recursive module, which is derived from a fidelity term, for disentangling the computation for multiple degradation levels. Extensive experimental results on image inpainting, interpolation, and super-resolution show the effectiveness of our DL-Net.
翻译:在各种图像恢复任务中,革命性神经网络被证明是有效的。然而,大多数最先进的解决方案都是使用具有单一特定降解水平的图像来培训的,如果应用到其他降解环境,其性能会急剧恶化。在本文中,我们提出了深度可能性网络(DL-Net ), 目的是将现成图像恢复网络推广到一系列的降解水平上。我们略微修改了现成网络,附加了一个简单的循环模块,该模块来自一个忠实的术语,用于分解多重降解水平的计算。关于图像涂料、内插和超分辨率的广泛实验结果显示了我们DL-Net的有效性。