This work presents the face-centred finite volume (FCFV) paradigm for the simulation of compressible flows. The FCFV method defines the unknowns at the face barycentre and uses a hybridisation procedure to eliminate all the degrees of freedom inside the cells. In addition, Riemann solvers are defined implicitly within the expressions of the numerical fluxes. The resulting methodology provides first-order accurate approximations of the conservative quantities, i.e. density, momentum and energy, as well as of the viscous stress tensor and of the heat flux, without the need of any gradient reconstruction procedure. Hence, the FCFV solver preserves the accuracy of the approximation in presence of distorted and highly stretched cells, providing a solver insensitive to mesh quality. In addition, FCFV is a monotonicity-preserving scheme, leading to non-oscillatory approximations of sharp discontinuities without resorting to shock capturing or limiting techniques. For flows at low Mach number, the method is robust and is capable of computing accurate solutions in the incompressible limit without the need of introducing specific pressure correction strategies. A set of 2D and 3D benchmarks of external flows is presented to validate the methodology in different flow regimes, from inviscid to viscous laminar flows, from transonic to subsonic incompressible flows, demonstrating its potential to handle compressible flows in realistic scenarios.
翻译:这项工作展示了模拟压缩流的以面为核心的有限量范式(FCFV)模式; FCFV方法定义了面部甘蓝中心的未知数,并使用混合程序消除细胞内所有自由度;此外,Riemann溶解器在数字通量的表达方式中隐含了定义;由此产生的方法提供了保守数量(即密度、动力和能量)的第一阶准确近似值,以及粘结应力拉和热通量,而不需要任何梯度重建程序。因此,FCFV解答器在扭曲和高度拉伸的细胞存在的情况下保存近似值的准确性,提供了一种对网状质量不敏感的溶剂;此外,Riemann溶解器是一个单一的保存办法,导致在不使用休克捕获或限制技术的情况下,对急剧不进行精确的近似。 对于低马赫数字的流动,这种方法是稳健的,能够在不需引入特定压力校正战略的情况下计算准确的解决方案。因此,FCFCFCFCFS解决问题的解决方案在扭曲和高度拉伸缩的单元格流中保持准确性流,从2D的流到从演示流到从演示流向的外部流的分流到分流的分流。